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Abstract

A numerical model has been developed to calculate the self- and mutual-radiation impedance in the cases
of uniformly and flexibly vibrating rectangular patches in a rigid infinite baffle. The spatial convolution
approach is employed here to derive general expressions for the radiation impedance of a rectangular
radiator in the form of simple integrals, which allows a fast evaluation numerically. The presented integral
solution agrees with that obtained for the mutual-radiation impedance of a uniformly vibrating rectangular
piston by the use of the classical approach. The numerical results of self-radiation impedance of a square
piston are compared with the tabulated values published previously. As examples of flexibly vibrating
rectangular patch, a closed-form expression is first given for the radiation impedance in the normal mode of
vibration. The numerical results reveal that the computation time in obtaining accurate calculations is
greatly reduced by using the proposed method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The calculation of the radiation impedance is fundamental to evaluate the acoustic
characteristics. It is often necessary to take into account the mutual impedance effects in noise
see front matter r 2004 Elsevier Ltd. All rights reserved.
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control and the design of transducer arrays. Radiation impedance computation has received
enormous attention in the literature because of its importance in the analysis of a variety of
acoustical systems [1,2]. Previous investigators have studied self-radiation impedance for
particular baffles [3–5], while also considering the mutual impedance for various radiators such
as sources on a sphere [6], circular and rectangular pistons on an infinite plane [6–9], pistons on a
cylinder, etc. [10].

Rectangular radiator has practical interest because it is usually used in the transducer array. In
1964, Arase [8] proposed a classic approach to calculate the radiation impedance of a rectangular
piston. The two identical rectangular pistons are assumed in same plane and have parallel sides.
An integral solution was given to simplify the evaluation for the mutual impedance. In 1971,
Stepanishen [11] suggested a time domain solution of the radiation impedance of a square piston.
The calculation formula for square piston is a closed form. Later, Burnett and Soroka [12]
introduced another kind of single integral, which contains a highly oscillatory integral kernel for
calculating the self-radiation impedance. They used a highly efficient numerical algorithm to
obtain the results. However, expressions of the self- and mutual-radiation impedance for
rectangular pistons are very complicated and hard to obtain an analytical solution. The
evaluation of the mutual impedance is rather cumbersome. The standard quadrature computation
algorithms, such as Gaussian, Simpson, Newton–Coters, Romberg, Monte Carlo, etc., are too
inefficient for calculating the numerical results. This is because of their high-dimensional integral.
Furthermore, the integral kernel contains numerical singularity points when self-radiation
impedance is calculated.

Recently, emphasis has been given to the numerical method. Bank and Wright [13] suggested
quadruple integral equations by using geometric relations among rectangular pistons, and
presented the tabulated data for various aspect ratios. Lee and Seo [14] employed the similar
method to estimate radiation power for the planar array acoustic transducer considering the
mutual coupling effect [15]. In addition, a modal Pritchard approximation has been developed to
compute the mutual impedance for acoustically hard arrays [16], whereas all those formulations
presented are based on uniformly vibrating rectangular patches, which may not be extended to find
acoustic interaction for a flexibly vibrating case. Generally, to calculate the mutual- and self-
radiation impedance of flexible rectangular patches, evaluating a quadruple integral is needed. Li
and Gibeling [17] investigated the calculation of mutual-radiation resistance from cross-model
coupling for a simply supported rectangular plate and their effects on the radiated sound power. It
was shown that, by recasting the quadruple integrals into several double integrals, the mutual-
radiation resistance could be obtained easily in the whole frequency range. More recently, in their
compressive paper, Pierce et al. [18] have discussed previous work and simplified the numerical
elevation of the radiation impedance for a single rectangular aperture when the basis functions are
expressible as a sum of products of exponential functions. The radiation impedance matrix has
been studied in a systematical manner and can be applied in many acoustic problems. Although
various methods have been presented for simplifying the numerical integration for a rectangular
radiator, there are few publications on the characteristics of the mutual-radiation impedance
resulting from two flexible rectangular patches. Thus, it would be appropriate to arrive at a solution
for the mutual-radiation impedance of two flexible rectangular patches in a rigid infinite baffle.

In this paper, an efficient calculation method has been developed, which is suited to the
determination of the radiation impedance in the cases of uniformly and flexibly vibrating
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rectangular patches. By using the spatial convolution approach, the general solution can be
expressed as a double integral. From some examples, the present algorithm provides numerical
results for the self- and mutual-radiation impedance, which are in good agreement with those
obtained directly by the classical approach. The comparison demonstrates that the computational
time of calculating the radiation impedance can be dramatically reduced.
2. Theory

Consider two planar radiators in an infinite rigid plane with velocity distribution of the form
v1ðx; yÞ ¼ U1u1ðx; yÞ on one patch and v2ðx; yÞ ¼ U2u2ðx; yÞ on the other patch. U1 and U2 denote
the reference velocities on patch #1 and patch #2, respectively. The reference velocity is referred to
be the average normal surface velocity. If the average normal surface velocity is zero, or very
small, the velocity at the center should be referred to the reference velocity [9]. u1ðx; yÞ and u2ðx; yÞ
denote the velocity distribution functions on patch #1 and patch #2, respectively.

For a given vibration velocity v1ðx
0; y0Þ; the sound pressure is given by the following formula:

p1ðx; yÞ ¼
ickr
2p

Z
S1

Z
v1ðx

0; y0Þ
eikR

R
ds0; ð1Þ

where S1 denotes the surface area of the radiator, c is the velocity of sound in the medium, r is the

density of the medium, k is the wave number and R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þ

2
þ ð y � y0Þ

2
þ ðz � z0Þ2

q
is the

distance between the source point and field point.
Mutual-radiation impedance of the radiators Z12 is defined as the force f 12 on the radiator

(patch #2) resulting from the vibration of the other radiator (patch #1), divided by the reference
velocity U1 of that vibrating radiator:

Z12 ¼
f 12

U1
: ð2Þ

The force on patch #2 due to the vibration of patch #1 is given as

f 12 ¼

Z
S2

Z
p1ðx; yÞu2ðx; yÞds: ð3Þ

Then, the mutual-radiation impedance can be obtained as

Z12 ¼
irck

2p

Z
S1

Z Z
S2

Z
u1ðx

0; y0Þu2ðx; yÞ
e�ikR

R
ds0 ds; ð4Þ

where S2 denotes the surface area of transducer #2. It can be seen that the principle of
reciprocation is satisfied by this definition. That means Z12 ¼ Z21: In the following discussion, we
will use Zm to denote mutual-radiation impedance.

As two identical planar sources coincide with each other, Eq. (4) becomes the expression of self-
radiation impedance,

Zs ¼
irck

2p

Z
S1

Z Z
S1

Z
u1ðx

0; y0Þu1ðx; yÞ
e�ikRs

Rs

ds0 ds; ð5Þ
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where Rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þ

2
þ ðy � y0Þ

2
q

is the distance between the elements ds and ds0: Obviously,
Eqs. (4) and (5) are all quadruple integrals, which make difficult numerical computation.

Fig. 1 shows two coplanar rectangular patches, where wx and wy are referred to the width of the
rectangular patch in x and y directions, respectively. The radiation impedance expressions will be
simplified to double integrals for easy evaluation.

From Eq. (4), the mutual-radiation impedance is given by

Zm ¼
irck

2p

Z wx=2

�wx=2

Z wy=2

�wy=2

Z wx=2

�wx=2

Z wy=2

�wy=2
u1ðx

0; y0Þu2ðx; yÞ
e�ikRm

Rm

dx dy dx0 dy0; ð6Þ

where Rm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1 þ x � x0Þ

2
þ ð y2 � y1 þ y � y0Þ2 þ ðz2 � z1Þ

2
q

: The point ðx1; y1; z1Þ and
ðx2; y2; z2Þ are referred to the center points of patch #1 and patch #2, respectively. Similarly, as
two rectangular patches coincide, i.e., x1 ¼ x2; y1 ¼ y2; and z1 ¼ z2; Eq. (6) becomes the
expression of self-radiation impedance.

Using the Dirac delta function, the Green’s function in Eq. (6) can be written as

e�ikRm

Rm

¼

Z 1

�1

Z 1

�1

dðu � ðx � x0ÞÞdðv � ð y � y0ÞÞ
e�ikr

r
du dv; ð7Þ

where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu þ x2 � x1Þ

2
þ ðv þ y2 � y1Þ

2
þ ðz2 � z1Þ

2
q

:
Substituting Eq. (7) into Eq. (6) and changing the integral order, we have the mutual impedance

Zm ¼
irck

2p

Z 1

�1

Z 1

�1

sðu; vÞ
e�ikr

r
du dv; ð8Þ

where

sðu; vÞ ¼

Z wx=2

�wx=2

Z wy=2

�wy=2

Z wx=2

�wx=2

Z wy=2

�wy=2
u1ðx

0; y0Þu2ðx; yÞdðu � ðx � x0ÞÞdðv � ðy � y0ÞÞdx dy dx0 dy0:

ð9Þ
2y

1y

1x 2x x

y

xw

yw

xw

yw

Fig. 1. The geometry of two rectangular patches.
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After integrating over x and y; the spatial convolution formula is achieved as

sðu; vÞ ¼

Z wx=2

�wx=2

Z wy=2

�wy=2
u1ðx

0; y0Þu2ðu þ x0; v þ y0Þf 1ðx
0; uÞf 2ð y0; vÞdx0 dy0; ð10Þ

where

f 1ðx
0; uÞ ¼

1; �
wx

2
pu þ x0p

wx

2
;

0; other

(
ð10aÞ

and

f 2ð y0; vÞ ¼
1; �

wy

2
pv þ y0p

wy

2
;

0; other:

(
ð10bÞ

Because �wx=2px0pwx=2 and �wy=2py0pwy=2; from Eqs. (10a) and (10b), it can be derived
that �wxpupwx and �wypvpwy: Then Eq. (8) can be rewritten as

Zm ¼
irck

2p

Z wx

�wx

Z wy

�wy

sðu; vÞ
e�ikr

r
du dv: ð11Þ

Given the velocity distribution functions u1ðx; yÞ and u2ðx; yÞ; the function sðu; vÞ in Eq. (8) can be
obtained by using Eq. (10). It should be noted that expression of sðu; vÞ is usually in closed form
for a normal velocity distribution. To illustrate in some detail the computations involved, we
derive the function sðu; vÞ in the next section.
3. The closed-form expression of function sðu; vÞ

In general, any arbitrary velocity distribution on a baffled rectangular patch may be represented
by a series expansion if the set of basis functions is taken to satisfy different boundary conditions.
A natural choice of basis functions would be products of trigonometric functions such as a
sine–sine series or cosine–cosine series. In this paper, the origin of our coordinate system is
assumed to be at the center of the patch; the distribution of velocity on a radiator can take the
form cosðkx

mxÞ cosðky
nyÞ kx

m ¼ mp=wx is the wave number of the mth basis function in the x-
direction and ky

n ¼ np=wy the wave number of nth basis function in the y-direction. It is clear that
Eq. (10) can be evaluated analytically; so the initial fourfold integral for radiation impedance is
reduced to a twofold integral.

3.1. Rigid piston

The simplest case is a baffled rigid-piston radiator, which is treated in many textbooks and
some papers, but we include it to illustrate the method and for comparison. Consider two
uniformly vibrating rectangular patches in a rigid infinite baffle, the velocity distribution functions
can take the forms u1ðx; yÞ ¼ 1 and u2ðx; yÞ ¼ 1: It is the special case of cosine–cosine series
uðx; yÞ ¼ cosðmpx=wxÞ cosðnpy=wyÞ as m ¼ n ¼ 0:
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From Eq. (10), we have,

sðu; vÞ ¼ ðwx � jujÞðwy � jvjÞ: ð12Þ

After the above closed-form solution is substituted into Eq. (11), some analytical simplification of
the mutual radiation impedance is obtained as

Zm ¼
irck

2p

Z wx

�wx

Z wy

�wy

ðwx � jujÞðwy � jvjÞ
e�ikr

r
du dv: ð13Þ

This expression is the same as the intermediary result introduced by Arase [8]. Through algebraic
deduction, Eq. (13) can be further reduced to one-dimensional integral.
3.2. Simply supported radiator

For the simply supported radiator, its velocity has maximum at the center of the patch and zero
at the edge. One could choose the velocity distribution functions of two baffled rectangular
patches in the forms

u1ðx; yÞ ¼ cos
mp
wx

x

� �
cos

np
wy

y

� �
; ð14Þ

u2ðx; yÞ ¼ cos
kp
wx

x

� �
cos

lp
wy

y

� �
; ð15Þ

where m; n and k; l are odd integers denoting the number of antinode lines.
From Eq. (10), we have

sðu; vÞ ¼ sxðuÞsyðvÞ; ð16Þ

where

sxðuÞ ¼
wx � juj

2
fcosðu1Þ sin cðu2Þ þ cosðu3Þ sin cðu4Þg; ð16aÞ

syðvÞ ¼
wy � jvj

2
fcosðv1Þ sin cðv2Þ þ cosðv3Þ sin cðv4Þg: ð16bÞ

In Eqs. (16a) and (16b), the coefficients ui and vi ði ¼ 1; 2; 3; 4Þ are denoted as

u1 ¼ ðm � kÞpu=2wx; u2 ¼ ðm þ kÞðwx � jujÞp=2wx; u3 ¼ ðm þ kÞpu=2wx;

u4 ¼ ðm � kÞðwx � jujÞp=2wx; v1 ¼ ðn � lÞpv=2wy; v2 ¼ ðn þ lÞðwy � jvjÞp=2wy;

v3 ¼ ðn þ lÞpv=2wy and v4 ¼ ðn � lÞðwy � jvjÞp=2wy:
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In addition, sin cðxÞ ¼ sinðxÞ=x: Finally, the radiation impedance is derived as a two-dimensional
integral equation

Zm ¼
irck

2p

Z wx

�wx

Z wy

�wy

sxðuÞsyðvÞ
e�ikr

r
du dv; ð17Þ

which deduces to Eq. (13) as m; n; k and l are all zeros. It is worthy of note, if m ¼ k; n ¼ l and
two rectangular patches coincide, i.e., x1 ¼ x2; y1 ¼ y2; and z1 ¼ z2; Eq. (17) becomes the
expression of self-radiation impedance for a single flexible rectangular patch, which is similar to
the analytical equation (27) derived in Ref. [18].
3.3. Clamped radiator

In this case, there is no exact solution of the fourth-order plate equation for a clamped
boundary. We can make good use of the products of Warburton function [19] for a close
approximation. Thus, the velocity distribution function of a baffled rectangular patch can be
written as uðx; yÞ ¼ vxðxÞvyðyÞ; and

vxðxÞ ¼ cos
gpx

wx

� �
þ

sinðgp=2Þ

sinhðgp=2Þ
cosh

gpx

wx

� �
; ð18Þ

where gp is a root of the characteristic equation

tanðgp=2Þ þ tanhðgp=2Þ ¼ 0; p ¼ 2; 4; 6; . . . ; ð19Þ

where p indicates the number of nodal lines. Similarly, we can get the expression for vyðyÞ in
y-coordinate.

To evaluate Eq. (10) in closed form, the even function vxðxÞ can be represented in the form of
Fourier series expansion,

vxðxÞ ¼
a0

2
þ

X1
q¼1

aq cos
2qp
wx

x

� �
; ð20Þ

where the Fourier coefficients

aq ¼
2

wx

Z wx=2

�wx=2
vxðxÞ cos

2qp
wx

x

� �
dx; q ¼ 0; 1; 2; . . . :

Inserting Eq. (18) and integrating it yields

aq ¼
1

1 þ dq

ð�1Þq8g3
p sinðgp=2Þ

g4
p � 16q4p4

; ð21Þ

where dq ¼ 1 ðq ¼ 0Þ or 0 ðqa0Þ: From Eq. (10), we have

sðu; vÞ ¼ sxðuÞsyðvÞ; ð22Þ
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where

sxðuÞ ¼

Z wx=2

�wx=2
vx1ðxÞvx2ðu þ xÞf 1ðx; uÞdx

¼
X1
m¼0

X1
n¼0

aman

Z wx=2

�wx=2
cos

2mp
wx

� �
cos

2np
wx

� �
f 1ðx; uÞdx

¼
X1
m¼0

X1
n¼0

aman f xðm; n; uÞ; ð23Þ

where the coefficients am and an take the expression given in Eq. (21), but with dm and dn;
respectively. The quantity f xðm; n; uÞ is the integral that appears in Eq. (23), which can be
evaluated analytically as

f xðm; n; uÞ ¼
wx � juj

2
fcosðu1Þ sin cðu2Þ þ cosðu3Þ þ sin cðu4Þg; ð24Þ

where u1 ¼ ðm � kÞpu=wx; u2 ¼ ðm þ kÞðwx � jujÞp=wx; u3 ¼ ðm þ kÞpu=wx; and u4 ¼ ðm �

kÞðwx � jujÞp=wx:
Similarly, the function syðvÞ can be obtained as

syðvÞ ¼
X1
k¼0

X1
l¼0

akalf yðk; l; vÞ; ð25Þ

where the coefficients ak and al take the expression given in Eq. (21) but with dk and dl ;
respectively, and the quantity f yðk; l; uÞ is given by

f yðk; l; vÞ ¼
wy � jvj

2
fcosðv1Þ sin cðv2Þ þ cosðv3Þ þ sin cðv4Þg; ð26Þ

where v1 ¼ ðn � lÞpv=wy; v2 ¼ ðn þ lÞðwy � jvjÞp=wy; v3 ¼ ðn þ lÞpv=wy and v4 ¼ ðn � lÞðwy �

jvjÞp=wy: Thus, the closed-form solution to function sðu; vÞ is

sðu; vÞ ¼
X1
m¼0

X1
n¼0

X1
k¼0

X1
l¼0

amanakalf xðm; n; uÞf yðk; l; vÞ: ð27Þ

Note that a truncated Fourier series is used to approximate the function sðu; vÞ for simplification
of the computation given in the next section.
4. Numerical results

The above equations (6) and (11) can be used to calculate the radiation impedances of
uniformly and flexibly vibrating rectangular patches. Let Zm ¼ rcAðR þ iX Þ: Here R and X
represent normalized radiation resistance and reactance, respectively; A denotes the area of the
patch. All evaluations were done on a PC computer (Pentium IV 1.9GHz) and the program codes
were developed using FORTRAN 90 language. We will test the efficiency and accuracy of the
proposed method through several examples.
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Firstly, the numerical results obtained from Eq. (13) for the rectangular piston are compared
with the tabulated results given by Burnett and Soroka [12]. The results in Table 1 clearly show
that our results agree with the Burnett’s results very well for various values of ka; where a ¼

ffiffiffiffi
A

p
:

The percentage differences between Burnett’s results and ours are considerably less than 0.05%.
In contrast, the computation errors derived from the quadruple surface integral method increase
significantly as ka becomes larger [13].

Secondly, the radiation impedance of the flexible rectangle patch is evaluated for distributions
of velocity on the radiator other than uniform, which may in some applications be more
realistic. In the case of the simply-supported radiators, Eqs. (16), (17) and the quadruple
integral (4) are used, respectively. For simplicity, the variables m ¼ k ¼ 1 and n ¼ l ¼ 0
are assumed for calculation. It implies that the velocity distribution is sinusoid in the x-direction
with two nodal lines and uniform in the y-direction. To solve Eq. (4), the multilayer
Gaussian quadrature algorithm is employed. We use ten Gaussian–Legendre nodes and
weights, and split the intervals of the integral to get the desired numerical precision. In the
case of clamped radiators, the velocity distribution function takes the form of Eq. (18).
Eqs. (20)–(27) and Eq. (11) are employed. Similarly, the number of nodal lines in the x-direction
is assumed to be p ¼ 2: It corresponds to two baffled square patches clamped at x ¼ �wx=2
and x ¼ wx=2 with a rigid boundary in the y-direction. Tables 2 and 3 show the numerical
results and the evaluation time consumed by using twofold integral and fourfold
integral, respectively, for simply supported and clamped radiators. Obviously, the proposed
Table 1

Normalized self-radiation resistance and reactance of square piston

ka Our results Burnett’s results [12] Differences

R X R X DR=R (%) DX=X (%)

0.1 0.00159067 0.04727767 0.0015907 0.0472786 0.0022 0.0020

0.2 0.00635207 0.09430686 0.0063521 0.0943088 0.0005 0.0021

0.3 0.01425251 0.14084102 0.0142525 0.1408439 �0.0001 0.0020

0.4 0.02523946 0.18663737 0.0252395 0.1866412 0.0002 0.0021

0.5 0.03924001 0.23145882 0.0392400 0.2314636 0.0000 0.0021

0.6 0.05616148 0.27507572 0.0561615 0.2750815 0.0000 0.0021

0.7 0.07589220 0.31726765 0.0758922 0.3172743 0.0000 0.0021

0.8 0.09830245 0.35782502 0.0983024 0.3578327 �0.0001 0.0021

0.9 0.12324558 0.39655066 0.1232456 0.3965593 0.0000 0.0022

1 0.15055921 0.43326126 0.1505592 0.4332708 0.0000 0.0022

2 0.51011721 0.66131165 0.5101172 0.6613308 0.0000 0.0029

3 0.87306171 0.61992498 0.8730617 0.6199537 0.0000 0.0046

4 1.07097152 0.41240951 1.0709715 0.4124478 0.0000 0.0093

5 1.07697326 0.21036721 1.0769733 0.2104150 0.0000 0.0227

6 0.98870257 0.12317300 0.9887026 0.1232262 0.0000 0.0432

7 0.92521441 0.14260903 0.9252144 0.1426650 0.0000 0.0392

8 0.93637777 0.18836267 0.9363778 0.1884227 0.0000 0.0319

9 0.99123608 0.19315527 0.9912361 0.1932208 0.0000 0.0339

10 1.03153947 0.15019029 1.0315395 0.1502609 0.0000 0.0470
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Table 2

Normalized self-radiation resistance and reactance for a square simply supported radiator ðx1 ¼ x2; y1 ¼ y2; and

z1 ¼ z2Þ

ka Double integral Quadruple integral

R X Time (s) R X Time (s)

1.00 0.061757 0.204803 57.95 0.061757 0.204825 69436.27

5.00 0.582937 0.186536 58.15 0.582937 0.186647 69376.52

10.00 0.531951 0.046463 58.16 0.531951 0.046685 69512.35

Table 3

Normalized self-radiation resistance and reactance for a square clamped radiator ðx1 ¼ x2; y1 ¼ y2 and z1 ¼ z2Þ

ka Double integral Quadruple integral

R X Time (s) R X Time (s)

1.00 0.244639 0.717296 66.80 0.244639 0.717359 70321.67

5.00 1.843234 0.369401 78.51 1.843236 0.369635 89517.97

10.00 1.687086 0.205079 85.22 1.687088 0.205547 89524.68
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method has significantly high efficiency. Compared to the quadruple integral method, the
computing time is greatly reduced. The ratio of the computing time reduction is more than
1000 times.

Finally, the self-radiation impedance and mutual-radiation impedance for flexible patches with
different velocity distribution modes are evaluated. In most cases of interest, a complete set of
basic functions can be represented as a sum of terms like products of Eqs. (14) and (15). The
variables m; n; k and l are integers, which imply that the radiator is not only considered for a
simply supported case. Table 4 shows the numerical results of the normalized self-radiation
impedance of a square radiator with different distribution modes by using the proposed method.
It is interesting to see that for some velocity distribution, the self-radiation resistance is smaller
than others. It indicates that radiation power at this velocity distribution is less than the others.
We also noted that the self-radiation resistance of a uniform vibration patch ðm ¼ k ¼ 0; n ¼

l ¼ 0Þ is the largest one among all other modes. It means that a piston has the highest radiation
efficiency. It should be mentioned that the sums of computing time of the data in Table 4 are less
than one-point calculation time of the quadruple integral.

Figs. 2–4 give the normalized mutual radiation resistance and reactance for ka ¼ 0:1; 0:5 and 1
as functions of the normalized separation distance when the square patches are lined up. The
normalized center-to-center distance between two patches (d=a) is zero in the y-direction and it
changes from 1 to 50 in the x-direction. One can see that the zeroes of different modes are at same
points on the d=a-axis. The normalized mutual-radiation resistance and reactance are oscillatory
decay as a function of d=a: As ka becomes larger, the normalized mutual-radiation impedance
oscillates faster. This kind of oscillation is independent of the velocity distribution modes. For
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Table 4

Normalized self-radiation resistance and reactance of a flexible square patch with different velocity distribution modes

ðk ¼ m; l ¼ nÞ

m n ka ¼ 0:1 ka ¼ 1 ka ¼ 10

R X R X R X

0 0 0.00159067 0.04727650 0.15055921 0.43324962 1.03153948 0.15011322

0 1 0.00064475 0.02189933 0.06175746 0.20479820 0.53195121 0.04644564

0 2 0.00000000 0.00638991 0.00001972 0.06488497 0.66599071 0.21373722

0 3 0.00007160 0.00672003 0.00645908 0.06524084 0.67563581 0.46934326

0 4 0.00000000 0.00357818 0.00000120 0.03591298 0.12039419 0.59146595

0 5 0.00002577 0.00382414 0.00231467 0.03748753 0.04101166 0.40844951

1 1 0.00032951 0.01121528 0.03154372 0.10486781 0.29358978 0.01894459

1 2 0.00003582 0.00398713 0.00348391 0.03952710 0.33522131 0.14542275

1 3 0.00001451 0.00324553 0.00136317 0.03237925 0.32040193 0.21731005

1 4 0.00000143 0.00178518 0.00006687 0.01774057 0.09055892 0.28093284

1 5 0.00000522 0.00180334 0.00047872 0.01792812 0.02823093 0.23308872

2 2 0.00019883 0.00647032 0.01878074 0.05967012 0.10116984 0.18590621

2 3 0.00011607 0.00542826 0.01127740 0.05214969 0.16727571 0.11501175

2 4 0.00000003 0.00265476 0.00028907 0.02743063 0.13968432 0.07805599

2 5 0.00001826 0.00227739 0.00164903 0.02229011 0.18346620 0.17336025

3 3 0.00020045 0.00686633 0.01901033 0.06379302 0.17538384 0.12371834

3 4 0.00005924 0.00408282 0.00597795 0.04034745 0.12163883 0.07259778

3 5 0.00000059 0.00240842 0.00014370 0.02451100 0.18341708 0.12138249

4 4 0.00019883 0.00628496 0.01881009 0.05789118 0.12552331 0.05713162

4 5 0.00009952 0.00475208 0.00973353 0.04584828 0.12906183 0.06833557

5 5 0.00019904 0.00641822 0.01885652 0.05927743 0.13451986 0.07030788
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same size of the radiator, the higher the velocity distribution mode is, the smaller the radiation
impedance value becomes.

Figs. 5 and 6 give the normalized mutual-radiation resistance and reactance for different
velocity distribution modes as a function of separation distance (kd) between two patches.
The normalized mutual radiation resistance and reactance also are oscillating decay functions
along the kd-axis. It is obvious that for the same velocity distribution mode, different size of the
patch has the same oscillatory frequency and the larger one has higher radiation impedance
values.
5. Conclusion

A simplified method for calculating the radiation impedance of rectangular patches in a rigid
infinite baffle was presented. The general solution for the self- and mutual-radiation impedance in
the cases of uniform and nonuniform vibration was derived. As an example, a formula has been
given to calculate the self- and mutual-radiation impedance of the rectangle patch with different
velocity distribution by using a double integral, instead of quadruple integrals. Numerical results
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Fig. 2. (a) Normalized mutual-radiation resistance for two square patches of dimension ka ¼ 0:1 and velocity

distribution ðm; nÞ mode � ðk; lÞ mode as a function of the normalized separation distance d=a: (b) Normalized mutual-

radiation reactance for two square patches of dimension ka ¼ 0:1 and velocity distribution ðm; nÞ mode � ðk; lÞ mode as

a function of the normalized separation distance d=a:
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Fig. 3. (a) Normalized mutual-radiation resistance for two square patches of dimension ka ¼ 0:5 and velocity

distribution ðm; nÞ mode � ðk; lÞ mode as a function of the normalized separation distance d=a: (b) Normalized mutual-

radiation reactance for two square patches of dimension ka ¼ 0:5 and velocity distribution ðm; nÞ mode � ðk; lÞ mode as

a function of the normalized separation distance d=a:
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Fig. 4. (a) Normalized mutual-radiation resistance for two square patches of dimension ka ¼ 1 and velocity

distribution ðm; nÞ mode � ðk; lÞ mode as a function of the normalized separation distance d=a: (b) Normalized mutual-

radiation reactance for two square patches of dimension ka ¼ 1 and velocity distribution ðm; nÞ mode � ðk; lÞ mode as a

function of the normalized separation distance d=a:
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Fig. 5. (a) Normalized mutual radiation resistance for two square patches of dimension ka and velocity distribution

ð1; 0Þ mode �ð1; 0Þ mode as a function of the separation distance kd : (b) Normalized mutual radiation reactance for two

square patches of dimension ka and velocity distribution ð1; 0Þ mode � ð1; 0Þ mode as a function of the separation

distance kd :
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Fig. 6. (a) Normalized mutual radiation resistance for two square patches of dimension ka and velocity distribution

ð1; 1Þ mode �ð1; 1Þ mode as a function of the separation distance kd : (b) Normalized mutual radiation reactance for two

square patches of dimension ka and velocity distribution ð1; 1Þ mode � ð1; 1Þ mode as a function of the separation

distance kd :
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showed that the computation algorithm is more efficient than the quadruple integrals by using a
standard numerical quadrature algorithm. The proposed method can be extended to arbitrarily
vibrating rectangular patch radiators for calculation of the self- and mutual-radiation impedance.
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